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EXPERIMENTAL FLOW FIELD AND HEAT-TRANSFER INVESTIGATION 

OF SEVERAL TENSION SHELL CONFIGURATIONS 

AT A MACH NUMBER OF 8 

By Robert A .  Jones, Dennis M. Bushnell, 
and James L. H u n t  

Langley Research Center 

SUMMARY 

An investigation w a s  conducted a t  a Mach number of 8 t o  determine the flow 
f i e l d  and pressure and heat-transfer dis t r ibut ions about several  bell-shaped 
configurations ca l led  tension she l l s .  This shape provides a possible minimum- 
weight entry vehicle s t ructure  since the  she l l  can be designed as  a tension 
member. 
bers based on model base diameter from 0.1 x 10 6 t o  1.5 X 10 6 and angles of 
a t tack  from Oo t o  31°. 
unsteady flow f i e l d s  with extensive regions of separated flow. 
separation and type of flow f i e l d  were found t o  be functions of wall-to-total- 
temperature r a t io ,  Reynolds number, nose bluntness, and base corner radius. 
Extensive separation can occur on the concave portion of some bodies, the r e su l t  
being t h a t  t he  e f fec t ive  shape i s  similar t o  a blunted cone. 
t h e  shapes had very l i t t l e  separation and a multiple-shock flow pat tern w a s  
observed. 
a nearly normal shock i s  formed which r e su l t s  i n  very high pressures on the  f l a r e  
and correspondingly large drag coefficients.  

Schlieren data w e r e  obtained over a range of free-stream Reynolds num- 

These data indicated tha t  cer ta in  of the shapes have 
The extent of 

Certain other of 

Near the  nose the  shock l ies  close t o  the  body but fa r ther  downstream 

Heat-transfer and pressure dis t r ibut ions were obtained a t  Reynolds numbers 
based on free-stream conditions and on model base diameter of 0.2 X 10 6 and 

0.5 x lo6, respectively,  f o r  a configuration which seemed t o  have a more s table  
flow f i e l d  and higher drag. 

A f e w  tests were made i n  a smll  f a c i l i t y  which used CF4 (tetrafluorometh- 
ane) as the  tes t  gas i n  order t o  study the  effect  of normal shock density r a t i o  
on shock shape. 
sens i t ive  t o  t h i s  density r a t io .  
coeff ic ient  depend on the  location and configuration of t h i s  shock, it i s  
believed t h a t  r e l i ab le  extrapolation t o  f l i g h t  conditions cannot be obtained 
without reasonable simulation of normal shock density r a t io .  
t h a t  use a i r  or nitrogen a s  the  tes t  gas cannot provide the required simulation 
of normal shock density r a t i o s .  

The posi t ion of the  nearly normal shock w a s  found t o  be very 
Since the  pressure d is t r ibu t ion  and the drag 

Most f a c i l i t i e s  



INTRODUCTION 

Studies a re  currently being made of sui table  entry configurations fo r  an 
unmanned Mars mission. 
s c i en t i f i c  payload on the surface of Mars. 
have low values fo r  the b a l l i s t i c  coeff ic ient  i n  order t o  u t i l i z e  atmospheric 
braking i n  the  t h i n  Martian atmosphere. 

One of the purposes of t h i s  mission would be t o  land a 
Such an entry configuration must 

One class  of shapes desirable from a s t ruc tu ra l  standpoint ( r e f .  1) i s  a 
The s t ruc tu ra l  advantages of t h i s  shape 

Previous aerodynamic s tudies  ( r e f s .  3 t o  6)  have 
The extent 

b e l l  shape known a s  a tension she l l .  
a r e  discussed i n  reference 2. 
shown tha t  such shapes may have extensive regions of separated flow. 
and s t a b i l i t y  of the separated flow are  dependent on Reynolds number, wall-to- 
total-temperature r a t io ,  and angle of a t tack.  
ness r a t i o  and fineness r a t i o ,  a l so  a f f ec t  the flow configuration. 

Shape parameters, such a s  blunt- 

The present investigation was undertaken t o  determine the  e f f ec t  of wall- 
to-total-temperature r a t i o ,  Reynolds number, and angle of a t tack  on the forma- 
t i on  and extent of boundary-layer separation and t o  study the  resu l t ing  flow 
f i e l d s  about cer ta in  of these shapes.1 Schlieren data were obtained on four 
preliminary shapes fo r  ranges of free-stream Reynolds numbers based on model 
base diameter from 0.106 x 10 6 t o  1.36 x lo6 wall-to-total-temperature r a t i o s  
from 0.2 t o  0.9, and angles of a t tack  from Ob t o  31'. 
these preliminary configurations, a shape w a s  selected t h a t  seemed t o  have 
steady flow and high drag f o r  a wide range of conditions. Pressure and heat- 
t ransfer  dis t r ibut ions were obtained fo r  t h i s  " improved'' shape a t  wall-to-total-  
temperature r a t io s  of approximately 0.9 and 0.5,  respectively,  angle of a t tack  
from 0' t o  20°, and free-stream Reynolds numbers based on base diameter of 
0.2 X lo6 and 0.5 X lo6. The effect  of normal shock density r a t i o  on the flow 
f i e l d  w a s  investigated b r i e f l y  f o r  t h i s  shape i n  a s m a l l  hypersonic f a c i l i t y  
using CF4 (tetrafluoromethane) as the  t e s t  gas. 

Based on the  r e su l t s  fo r  

SYMBOLS 

a,b,c ,d 

D base diameter 

flow regions (see f i g .  15) 

h heat-transfer coeff ic ient  

h0 reference heat-transfer coefficient taken t o  be the calculated value 
a t  the  stagnation point of a sphere having same diameter as model 
base 

M, nominal free-stream Mach number 
~ ~~~~ ~~ ~ 

'A preliminary summary of t he  work presented herein was included i n  the  
informal discussions attendant t o  the  AIAA Entry Technology Conference, 
Williamsburg, V a . ,  Oct. 12-14, 1964. 



P loca l  s t a t i c  pressure 

P t  t o t a l  pressure behind a normal shock 

r loca l  body radius 

T C  corner radius a t  model base 

rn nose radius 

%,D 

T W  wall temperature 

free-stream Reynolds number based on model base diameter 

T t  t o t a l  temperature 

X distance along ax is  of symmetry of model (see f i g .  1) 

U angle of a t tack  

A shock standoff distance (see f i g .  19) 

Ps density behind normal shock 

pa3 free-stream density 

B circumferential  angle measured from windward ray of model 

APPARATUS 

This invest igat ion was conducted i n  the Langley Mach 8 variable-density 
tunnel.  
type and has an ax ia l ly  symmetric nozzle with contoured walls. 
section Mach number var ia t ion with stagnation pressure i s  given i n  reference 8 
and var ies  from 7.6 t o  7.96 f o r  the  conditions of t he  present t e s t s .  
conditions were stagnation pressure from 65 t o  1015 psia  (0.447 t o  7.0 MN/m2) 
and stagnation temperature from 800° F t o  1000° F (TOO0 K t o  812O K ) .  
stream Reynolds number range of the present t e s t s  was from 0.106 X 10 
1.5 X lo6, based on model base diameter. 

(See r e f .  7 for  de ta i led  description.)  This tunnel i s  of the  blowdown 
The average t e s t  

These 

The f ree-  
t o  6 

The CF4 (tetrafluoromethane) f a c i l i t y  was a small blowdown wind tunnel 
having a conical nozzle with a 3-inch (7.63-cm) diameter t e s t  section. It 
operated over a range of stagnation pressures from 1000 t o  2500 psia  (6.69 t o  
17.2 MN/m*) a t  a stagnation temperature of approximately 350' F (450' K )  . 
free-stream Mach number was approximately 8. 

* -  - 
The 

MODELS AND INSTRUMENTATION 

The external  coordinates of the  four preliminary configurations a re  shown 
i n  figure 1. Two sets of models were made: one s e t  with D = 4 inches (10.16 cm) 

3 



and one set with 
347 s ta in less  s t e e l  and had a sharp corner a t  the  intersect ion of t h e  f l a r e d  
base and the a f t  r ing  ( f i g .  1). 

D = 2 inches (5.08 cm). These models were machined from - 

Shown i n  f igure 2 are  the coordinates fo r  the  f i n a l  configurations t e s t ed  
i n  the  present investigation, models 5 and 6. 
were constructed with both sharp and blunt noses, as shown i n  the  f igure.  
B e r y l l i u m  copper was used f o r  the pressure models, with 0.030-inch (0.076-cm) 
diameter o r i f i ce s  in s t a l l ed  a t  the surface coordinates given i n  the f igure.  All 
or i f ices  were located along one ray of t he  model. 
couple was ins t a l l ed  i n  the  posit ion shown i n  f igure 2 t o  indicate  w a l l  tempera- 
tu re .  
sharp nose of the  heat-transfer model was made of s t e e l  (1/2 inch (1.27 cm) i n  
length) t o  ensure a sharp t i p  during the tests.  

Pressure and heat-transfer models 

A copper-constantan thermo- 

Heat-transfer models were cas t  from a high temperature p l a s t i c .  The 

The preliminary shapes with the  &-inch (lO.15-cm) base diameter were t e s t ed  
with cooled-wall conditions. 
by means of t he  nozzle shown i n  figure 3. 
t h e  model was clamped onto the  strut with the  end of t he  nozzle inser ted  inside 
the cavity about 1/2 inch (1.27 cm) from the  back surface of the  model. 
l i qu id  nitrogen vaporized and passed i n t o  the wake of t he  model. Thermocouples 
were located on the back surface of the model t o  indicate  wall  temperature. 

Liquid nitrogen was sprayed i n t o  an i n t e r i o r  cavity 
During the  cooling and t e s t i n g  periods 

The 

EQUIPMENT 

Photographs of the flow f i e l d s  of the preliminary configurations were 
obtained a t  zero angle of a t tack  during tests with both cooled- and uncooled- 
w a l l  conditions. 
camera were used with a framing speed of 200 frames/sec and an exposure time of 
2.2 milliseconds. A dc power supply was used fo r  the l i g h t  source. Schlieren 
photographs fo r  angles of a t tack  greater than zero were obtained by using an 
aerographic camera and a schlieren spark exposure time of 4 t o  6 microseconds. 

A single  pass schlieren system and a 16-rnm motion-picture 

Motion pictures  of the  phase-change coating used i n  obtaining the  heat- 
t ransfer  data were taken with a 35-m camera a t  a framing speed of 20 frames/sec 
and electronic strobe l i gh t s .  

The pressure data were recorded photographically from mercury manometers. 

TEST PROCEDURES AND DAW REDUCTION 

A l l  tests were conducted by in jec t ing  t h e  model i n t o  t h e  tunnel t e s t  sec- 
t i on  after the flow was established. The t o t a l  t i m e  f o r  in jec t ion  was approxi- 
mately 0.1 second. 
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Schlieren Photographs 

Preliminary configurations.- The 4-inch (10.15-cm) diameter models were 
t e s t ed  a t  zero angle of a t tack  with both the  cooled- and uncooled-wall conditions 
which gave i n i t i a l  values of Tw/Tt 
The motion-picture camera was s t a r t ed  ju s t  before the models were injected in to  
the stream t o  ensure t h a t  data were obtained with the  wall temperature essen- 
t i a l l y  a t  i t s  i n i t i a l  value. For the uncooled-wall conditions, p ic tures  were 
taken with an aerographic camera a t  angles of a t t ack  of Oo, 8 O ,  l5O, and 31°. 
Because of a delay of approximately 5 seconds between successive photographs a t  
a constant angle of actack the  model wall  was generally warmer than i t s  i n i t i a l  
value. Therefore Tw/Tt varied from about 0.4 t o  0.9 f o r  these photographs 
depending upon t e s t  time. 
a t  zero angle of a t tack  with the  uncooled-wall conditions. 
taken of these t e s t s .  
inary configurations was from 0.106 x 10 

of approximately 0.2 and 0.4, respectively. 

The 2-inch (5.08-cm) diameter models were t e s t e d  only 
Motion p ic tures  were 

The Reynolds number range of these t e s t s  on the  prelim- 
6 6 t o  1.36 x 10 . 

Final  configurations.- Schlieren data for  t he  f i n a l  configurations were 
obtained a t  Reynolds numbers of 0.2 X lo6, 0.5 x lo6, and 1.5 X 10 6 f o r  a wall 
temperature near room temperature (Tw/Tt = 0.4). 
a t  the  thermocouple location shown i n  f igure 2 was used t o  obtain t h e  r a t i o  
Tw/Tt for these t e s t s .  

The wall temperature measured 

Pressure Distributions 

Pressures on the  f i n a l  configuration beryllium copper models were obtained 
6 6 a t  Reynolds numbers of 0.5 x 10 and 1 .4  x 10 f o r  the uncooled-wall conditions. 

The r a t i o  
s e t t l i n g  of the  mercury manometers. 

Tw/Tt was approximately 0.9 because of the time required f o r  the  

Heat-Transfer Distributions 

The heat- t ransfer  t e s t s  were ma e only f o r  the f i n a l  configurations 
(models 5 and 6 )  a t  R m , ~  = 0.2 x 10% with an uncooled wall (Tw/Tt = 0.3) .  
Heat-transfer data were obtained by a phase-change coating technique described 
i n  references 9 and 10. The coatings used had phase-change temperatures of 
l25O F and 250' F (325' K and 395O K ) .  I n  t h i s  technique the  heat- t ransfer  
coef f ic ien ts  a r e  determined. by measuring the time required f o r  a point on the  
surface of the  model t o  reach the phase-change temperature, a s  indicated by the  
v i s i b l e  phase change of a t h in  surface coating. These values of t i m e  and t e m -  
perature a r e  then used Ifi the s o h t l o n  tz the heat. conduction equation f o r  a 
semi- inf ini te  s lab with a s tep input i n  h t o  ascer ta in  the  heat-transfer 
coef f ic ien t .  

5 



ACCURACY 

The accuracy of the phase-change coating technique i s  discussed i n  d e t a i l  
i n  reference 10. 
a re  probably accurate t o  within 15 percent. 

For the  present t e s t s  t he  f i n a l  heat-transfer coeff ic ient  data 

The accuracy of the  pressure data i s  determined primarily by the  accuracy 
t o  which the manometer data can be read from the f i l m .  
the  maximum error  i s  about ?5 percent. 

For the present t e s t s  

The wall temperature was taken t o  be t h a t  indicated on the back surface of 
the model a t  t he  thermocouple location shown i n  f igures  2 and 3 .  
the  model material  was a good thermal conductor there  was a temperature d i s t r i -  
bution along the  surface as  well as  some difference between the  f ront  and back 
surface temperatures. Therefore, the wall temperatures given for  t he  schlieren 
and pressure s tudies  a re  only approximate. The estimated accuracy of t he  r a t i o  
T,/Tt i s  *O.O5.  

Even though 

FESULTS AND DISCUSSION 

Preliminary Configurations 

Uncooled-wall conditions.- Shown i n  f igures  4 t o  7 a re  schlieren photo- 
graphs of t he  four preliminary models f o r  the uncooled-wall condition 
(Tw/Tt x 0.5). Photographs a re  shown a t  various values of %,D and f o r  
a = Oo, 8 O ,  l5O, and 31' and i l l u s t r a t e  the e f f ec t  of k,D and a upon shock 
shape and flow-field s t a b i l i t y .  To i l l u s t r a t e  unsteady flow f i e l d s ,  two 
schlieren pictures  a t  the same Reynolds number a re  sometimes shown. When the 
flow f i e l d  i s  s imilar  t o  t h a t  of another Reynolds number and both appear steady, 
only one photograph i s  shown. 
fixed stream conditions aided i n  the determination of whether the flow was 
steady or  unsteady. Both the motion-picture films and the spark photographs 
seemed t o  give similar r e su l t s ,  even though the wall temperature f o r  the  l a t t e r  
was greater than the i n i t i a l  value. These remarks, therefore ,  a r e  va l id  fo r  
Tw/Tt FZ 0.5. 

Examination of successive photographs taken f o r  

The r e su l t s  fo r  preliminary model number 1 are  shown i n  f igure 4. A t  zero 
angle of a t tack  and low Reynolds number the  flow around the  model i s  unsteady 
with extensive regions of separated flow. 
the  extent of separation, s t ab i l i ze s  t h e  flow, and r e s u l t s  i n  a higher drag flow 
pa t te rn  ( r e f s .  6 and 11). 

Increasing the Reynolds number reduces 

The same general t rend  occurs a t  angle of a t tack .  

Results for  model 2 a re  shown in . f igu re  5 .  For t h i s  model, a t  zero angle 
of a t tack,  increasing the  Reynolds number s t ab i l i zed  the  flow, but did not 
appreciably a f f ec t  the extent of flow separation. 

Figures 6 and 7 a re  the r e s u l t s  fo r  models 3 and 4, respectively,  and show 
the opposite trend, i n  respect t o  the  e f fec t  of Reynolds number on r e l a t ive  
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‘ s tab i l i ty ,  from models 1 and 2. 
t o  become more unsteady. However, the  flow-field f luctuat ions a re  of smaller 
amplitude than those which occur f o r  models 1 and 2. The extent of separated 
flow over these configurations does not seem t o  change appreciably with Reynolds 
number. These remarks apply also f o r  t he  models a t  angle of a t tack.  

A s  Reynolds number i s  increased the flow seems 

The previous discussion indicates  t h a t  for  the  uncooled wall there  a r e  two 
d i f fe ren t  types of flow about these shapes. The separated flow f i e l d  f o r  a shape 
having a small r a t i o  of (models 1 and 2)  seems t o  become s tab le  a t  higher 
Reynolds numbers. Shapes having a la rger  value f o r  r n / D  (models 3 and 4) seem 
t o  have unstable flow f i e l d s  a t  higher Reynolds numbers. 

r d D  

To ensure t h a t  the i n s t a b i l i t i e s  noted a t  low Reynolds numbers on models 1 
and 2 were ,not due t o  tunnel blockage e f fec ts ,  models of 2-inch (7.08-cm) base 
diameter were tes ted .  k , ~ ,  the  same degree of fluctua- 
t i o n  was noted i n  the shock shape; therefore,  it i s  concluded tha t  the observed 
flow-field f luctuat ions were not due t o  tunnel e f f ec t s .  

For similar values of 

Cooled-wall conditions.- Shown i n  figure 8 a re  typ ica l  schlieren photo- 
graphs taken with the  motion-picture camera for a = 0’ and Tw/Tt = 0.2 f o r  
models 1 t o  4. Similar trends with Reynolds number were apparent, a s  with the  
uncooled wall, for models 3 and 4, and there seemed t o  be l i t t l e  e f f ec t  of 
cooling the  wall. For models 1 and 2, however, cooling the  wall seemed t o  
s t ab i l i ze  the flow f i e l d  a t  a lower Reynolds number. 
(high-drag) flow pa t te rn  was observed f o r  model 2 a t  %,D = 1.36 X lo6, whereas 
fo r  the  uncooled wall t e s t s  it was not observed (see f i g .  5 ( a ) ) ;  a similar 
e f f ec t  of wall  temperature upon extent of separated flow was observed on s imilar  
configurations i n  reference 5. 
occur during Martian entry,  it i s  advantageous t h a t  t h i s  high-drag shock shape 
occur f o r  model 2 a s  well a s  f o r  model 1. 
was 0.2 and i s  thought t o  be a conservative estimate f o r  an ac tua l  entry.  
However, the  high-drag shock shape only occurs f o r  the  high Reynolds number 
t e s t .  

An en t i r e ly  d i f fe ren t  

A s  some degree of nose blunting w i l l  probably 

The value of Tw/Tt f o r  these t e s t s  

Corner radius e f fec t . -  To ascer ta in  i f  changing the shape of the rear  
corner would promote the formation of the high-drag flow f i e l d  a t  lower Reynolds 
numbers, a 0.12-inch (0.303-cm) radius ( r c / D  = 0.03) was machined on the rear  
corner of model 2. This model was then tes ted  with both a cooled and uncooled 
wall and over the same Reynolds number range a s  before. The r e su l t s  of these 
and the  previous t e s t s  a r e  summarized i n  f igure 9 .  This f igure shows the e f f ec t  
of Tw/Tt and %, D on shock shape f o r  both the sharp and round corner models. 
These data were obtained by suddenly exposing a cold model t o  the airstream and 
o’usjei=i4ilg the flov fielc? z s  the model was heated during the  run. 
temperature a t  which a change i n  flow f i e l d  occurred was recorded. 
mate region where the flow f i e l d  changed i s  shown as  a band because of the 
l imi ted  number of t e s t s  conducted and the uncertainty i n  the  value of 
The flow f i e l d  t o  the  upper l e f t  of a band i s  characterized by extensive 
boundary-layer separation, which streamlines the  flow and r e su l t s  i n  a shock 
wave s imi la r  t o  t h a t  about a blunted cone, and i s ,  consequently, a lower drag 
flow pa t te rn .  The flow f i e l d  t o  the  lower r igh t  of a band i s  characterized by 
attached boundary-layer flow with a nearly isentropic  compression downstream of 

The model 
The approxi- 

Tw/Tt. 
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t he  nose, a large nearly normal shock, very high pressures over the  large a rea-  
of t he  f l a r e ,  and consequently high drag. It can be seen from t h i s  f igure  t h a t  
rounding the  back corner caused the  high-drag shock shape t o  be maintained a t  
lower values of Reynolds number even f o r  re la t ive ly  hot w a l l s .  
corner a lso affected the s t a b i l i t y  of the flow f i e l d  f o r  model 2. This e f f ec t  
can be seen by comparing f igures  9 and 10. 
a region of unsteady flow was observed fo r  the  low-drag shock shape, whereas 
f o r  the  round corner ( f i g .  9 )  unsteady flow was never observed f o r  the  conditions 
of t he  present tests.  
obtain the  high-drag steady f l o w  f ie ld  around a blunt-nose body even f o r  t he  
low i n i t i a l  Reynolds number a t  the  low values of 
Martian entry. 

Rounding the  

For the sharp corner t es t s  ( f i g .  10) 

Therefore, a rounded corner design makes it possible t o  

Tw/Tt that would occur during 

Final  Configuration 

On t h e  basis of the aforementioned r e su l t s  a shape w a s  chosen t h a t  would 
give the desired high-drag flow f i e l d  f o r  a wide range of Reynolds numbers and 
Tw/Tt. 
same corner radius a t  the  f l a r e  a s  model 2 with a rounded corner. 

This shape (see f i g .  2) was s l i gh t ly  longer than model 2 and had the  

.- Presented i n  figures 11 and 12 are  schlieren photographs 
uncooled-wall conditions (Tw/Tt x 0.5 t o  0.8) ,  Reynolds 

numbers of 0.2, 0.5 ,  and 1.5 x lo6, and angles of a t tack  of Oo, 5 O ,  1 2 O ,  and 20'. 
Data for  both a sharp and blunt configuration are presented. 
were taken a t  the beginning of the tes t  and since the  model material (beryllium 
copper) i s  a good thermal conductor the  model was essent ia l ly  isothermal. 

The photographs 

Shown i n  f igure 11 are  schlieren photographs of the  sharp-nose model a t  
a = Oo, 5 O ,  12O, and 20'. Only one picture  w a s  taken during a given tes t  and 
therefore nothing can be sa id  a s  t o  r e l a t ive  s t a b i l i t y  of the  flow f i e ld  about 
t h i s  configuration except t h a t  i n  v isua l  observation it appeared t o  be steady. 
A t  zero angle of a t tack  the flow f i e l d  i s  the  high-drag type with a r e l a t ive ly  
s m a l l  separated flow region where the nearly normal f l a r e  shock or iginates  near 
t h e  body. The extent of t h i s  separation decreases with increasing Reynolds 
number f o r  a l l  values of a. 

Shown i n  figure 12 are schlieren photographs f o r  the  blunt-nose configura- 
t ion.  The flow-field r e su l t s  f o r  the f i n a l  configuration are i n  agreement with 
the  flow-field map f o r  model 2 with the rounded corner (see f i g .  9) i n  t h a t  fo r  
a 
%, D > 0.4 X lo6 and becomes separated (low drag) f o r  &,D < 0.3 X 10 6 . HOW- 
ever, the  flow does not become attached on t h e  lee side of the blunt model with 
increasing a t  angle of a t tack  as it did f o r  t he  sharp-nose f i n a l  config- 
uration a t  small angles of a t tack.  

Tw/Tt of approximately 0.5 t o  0.6 the  flow w a s  at tached (high drag) f o r  

> 

%, D 

Pressure dis t r ibut ions.-  Shown i n  f igure 13 a r e  the  measured pressure 
dis t r ibut ions fo r  t he  sharp-nose f i n a l  configuration f o r  angles of a t t ack  of 
oo, 5', 1 2 O ,  and 20'. 
ra t ion  are presented i n  figure 14. For both sets of data the  measured loca l  
surface pressure has been nondimensionalized by dividing by the  calculated 

Pressure d is t r ibu t ions  for  t he  blunt-nose f i n a l  configu- 
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stagnation pressure behind a noma1 shock a t  the nominal free-stream Mach 
number ( t h a t  i s ,  free-stream p i t o t  pressure).  
were taken a t  nearly adiabatic wall temperature since long t e s t ing  times were 
required t o  s e t t l e  out the  manometers. 

A l l  the  data i n  these two f igures  

The zero angle-of-attack pressure d is t r ibu t ion  of the sharp-nose configura- 
The model i s  conical i n  the  v i c in i ty  of t he  nose t i o n  i s  shown i n  f igure l 3 ( a ) .  

( r / D  < 0.12) with a half  angle of 28O, and the pressures i n  t h i s  region a re  i n  
agreement with cone theory ( r e f .  E). 
increases i n  a uniform manner up t o  the v ic in i ty  of the flare-shock skirt-shock 
juncture ( r / D  = 0.23). Downstream of t h i s  intersect ion there  i s  a sudden large 
increase i n  pressure with a peak more than twice the free-stream p i t o t  pressure. 
The data f o r  locations downstream of 
high and low pressures with the  general pressure l eve l  i n  excess of the p i t o t  
pressure. 

Downstream of t h i s  region t h e  pressure 

r / D  = 0.27 show a ser ies  of a l te rna t ing  

Some of the same trends were found a t  angle of a t tack,  f o r  example, the  
However, the peak pressure 
( f i g .  l3(d)) the  peak pressure 

a l te rna t ing  high and low pressures on the f l a r e .  
was not always on the windward ray. A t  a = 12' 
occurred a t  # = 120'. For angles of a t tack  of 12' and 20' the  leeward ray 
(#  = 180~) had a much lower pressure l eve l  than the  other rays. This lower 
pressure i s  probably due t o  extensive boundary-layer separation on the  l e e  side.  
I n  general, the  blunt configuration ( f i g .  14)  showedthe same trends a s  the 
sharp configuration. 

The e f f ec t  of Reynolds number on pressure d is t r ibu t ion  can be seen by com- 
paring f igures  l 3 ( a )  and l 3 ( b )  or f igures  14(a)  and 14(b) .  
these f igures  there  i s  no effect  of Reynolds number on the cone-shock skirt-shock 
intersect ion;  however, a t  the  higher Reynolds numbers the  point of re f lec t ion  
of the  first imbedded shock moves forward s l igh t ly .  
t o  boundary-layer displacement e f fec ts .  

A s  i s  indicated i n  

This shift i s  probably due 

When comparing pressure d is t r ibu t ions  f o r  the  sharp and blunt configurations 
it should be noted t h a t  the pressure o r i f i ce s  a re  i n  fixed locations.  In  other 
words, f o r  d i s t r ibu t ions  with sharp peaks, only a small s h i f t  of the  point of 
shock impingement on the  body i s  required t o  miss a value a t  the  peak pressure. 
Therefore, no great  significance can be placed on the differences i n  magnitude 
of the  peak-measured pressures i n  figures 13 and 14, but i n  general the peak- 
measured pressures a re  a maximum f o r  t he  sharp configuration. 

The data f o r  various angles of a t tack  a re  shown i n  f igures  13 (c ) ,  13(d) ,  
13(e), 14 (c ) ,  14(d) ,  and 14(e)  a t  r o l l  angles from 0' t o  180'. 
from the  schl ieren photographs of figure 11, the windward ray has a d i s t r ibu t ion  
which exhib i t s  the  same charac te r i s t ics  a s  those f o r  zero angle of a t tack;  
whereas on the  l e e  side there  i s  more separation, particulai-lj; 2% higher acgles 
of a t tack ,  and consequently a smoother dis t r ibut ion.  

A s  expected 

Flow f i e l d . -  It i s  of i n t e r e s t  t o  determine i f  de t a i l s  of the  flow f i e l d  
f o r  the  sharp configuration a t  zero angle of a t tack  a s  seen i n  the  schlieren 
photograph of f igure U ( a )  correlate  with the pressure d is t r ibu t ion  of f i g -  
ure 13 (a ) .  A t  these conditions the  extent of separated flow i s  very small and 
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t he  surface pressure dis t r ibut ion depends mainly on the  inviscid f low properti6s.  
A sketch of t h e  schlieren photograph of f igure 11 (&,D = 0.5 X 10 6 ) i s  given 
i n  figure 15 t o  c l a r i f y  the  nature of the  flow f i e l d .  
portion (0.12 < r / D  < 0.23) t h e  pressure rises gradually as the  flow i s  being 
turned i n  what i s  essent ia l ly  an isentropic process. 

Downstream of t h e  conical 

Farther downstream a large nearly normal shock in t e r sec t s  t he  nearly conical 
shock from the  forward portion of t he  model. This shock i s  labeled t h e  s k i r t  
shock i n  f igure 15 and the  intersect ion of t he  forebody shock and the  skirt 
shock occurs a t  an x/D of about 0.2 which corresponds t o  a surface locat ion 
of 
intersect ion along a l i n e  normal t o  the  ax i s ) .  
flow f i e l d  i s  considerably more complicated. 
region c, i s  a subsonic constant pressure region with a s t a t i c  pressure close t o  
normal shock recovery pressure. This phenomenon imposes a constant pressure 
boundary on the  lower entropy flow along the  model surface, regions a,  b,  and d, 
which remains supersonic as far downstream a s  The constant pres- 
sure boundary i s  a s l i p  flow l i n e  or vortex sheet separating regions c and b. 
A s  the lower entropy flow i n  region a moves downstream it must tu rn  so as t o  
produce an increase i n  s t a t i c  pressure t o  the  l eve l  prevail ing i n  region c. 
Consequently, an oblique shock i s  formed between regions a and b. 
i s  ref lected from the  surface a t  r/D = 0.27. 
(region d) the  flow i s  s t i l l  supersonic but a t  a very high s t a t i c  pressure. 
From figure l 3 ( a )  the  pressure i n  region d w a s  found t o  be as high as 2.2 times 
the  free-stream p i t o t  pressure. 
pressure boundary or s l i p  flow l i n e  the flow must expand so a s  t o  reach a s t a t i c  
pressure again equal t o  t h a t  i n  region c. The expansion fan in t e r sec t s  t he  
model surface near and reduces surface pressures very sharply. 
Therefore the  flow between t h e  vortex sheet and the  body surface i s  character- 
ized by an a l te rna t ing  series of ref lected shocks and expansions u n t i l  f i na l ly ,  
somewhere downstream of 
sures are  equalized with uniform subsonic flow occurring along the  surface. 
This a l te rna t ing  se r i e s  of re f lec ted  shocks and expansions r e s u l t s  i n  widely 
varying surface pressures over the rear  of t he  model with regions where the 
s t a t i c  pressure i s  f a r  i n  excess of t he  free-stream p i t o t  pressure and regions 
where pressure i s  below the  free-stream p i t o t  pressure. 

r/D = 0.23 i n  f igure l3(a)  (taken as  surface location beneath the  shock 
From t h i s  point rearward the  

Immediately behind the  skirt shock, 

r / D  = 0.40. 

This shock 
Behind the  re f lec ted  shock 

When the re f lec ted  shock reaches the  constant 

r / D  = 0.325 

r / D  = 0.40, t he  vortex sheet i s  diss ipated and pres- 

On the bas i s  of the  flow mechanisms j u s t  described, an approximate calcu- 
l a t ion  f o r  the  surface pressure d is t r ibu t ion  can be car r ied  out as follows: 
F i r s t ,  neglecting boundary-layer separation, assume t h a t  the  flow i n i t i a l l y  
passes through a conical shock with a flow deflect ion equal t o  the  i n i t i a l  cone 
angle of t h e  model. Then assume t h a t  t h e  flow i s  compressed isentropical ly  and 
use the method of charac te r i s t ics  i n  th i s  isentropic  compression region. 
the  intersect ion of t he  strong nearly normal skirt shock and the  forebody shock 
requires a double i t e r a t ion .  
f ac t  t ha t  the pressures and flow angles behind the  in te rsec t ion  must be equal 
requires a s l i p  discontinuity because of t he  different  ve loc i t i e s  and entropies. 
The strong skirt shock requires subsonic flow behind it with one of three pos- 
s ib l e  f low pat terns  between the  s l i p  l i n e  and the surface: 
pression shock which i s  re f lec ted  from the  surface and followed by an expansion; 
( 2 )  a normal compression shock followed by subsonic flow; or  (3) a Simple 

Finding 

Arb i t r a r i l y  assume a point  of intersect ion.  The 

(1) an oblique com- 
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ekpansion fan followed by an oblique shock. 
f i e s  the  equal pressure requirement between regions b and c depends on the 
free-stream conditions and the  assumed location of the  intersect ion point.  
the  required equal i ty  of f b w  angle and pressure between regions b and c a re  
sa t i s f ied ,  the  inc l ina t ion  of the skirt shock i s  uniquely specified.  Determine 
the shape of the  r e s t  of t he  skirt shock from an empirical correlat ion of meas- 
ured shock shape. 
procedure i n  which the  mass flow passing i n  through the  skirt shock i s  i n  balance 
with t h a t  passing outward between the  s l i p  f l o w  l i n e  and the skirt shock a t  the  
rear  of the body. 
the  skirt shock and s l ip l ine .  

The par t icu lar  pa t te rn  which s a t i s -  

When 

Then ver i fy  the  intersect ion point by a t r ia l -and-error  

For t h i s  mass balance, constant pressure i s  assumed between 

The preceding i s  a description of the basic elements of a flow-field 
analysis  which was presented i n  reference 13 i n  which a surface pressure dis- 
t r ibu t ion  was calculated f o r  the  same shape and free-stream conditions a s  t h a t  
of f igure l 3 ( a ) .  
and compared with the  measured pressure d is t r ibu t ion  of f igure 13(a). 
approximate theory predicts  accurately the location of t he  f i r s t  large pressure 
rise a s  well  as i t s  magnitude and the d is t r ibu t ion  i n  the  isentropic  compression 
region. 

The r e su l t s  of t h i s  calculation a r e  presented i n  f igure 16 
This 

Effect of normal shock density r a t io . -  A flow-field calculation was made i n  
reference 13 f o r  equilibrium flow i n  a postulated Mars atmospheric composition 
a t  high velocities.- 
r a t i o  across a normal shock of ps/poo = 16.7 a s  compared with ps/p, = 5.57 
for  the  i d e a l  gas calculat ion i n  a i r  a t  Mach 8 which i s  shown i n  f igure 16. 
These r e s u l t s  a r e  reproduced i n  f igures  17 and 18 i n  order t o  i l l u s t r a t e  t he  
sensit iveness of the flow f i e l d  over the sharp-nose model t o  r e a l  gas e f f ec t s ,  
primarily the  density r a t io .  A s  shown by comparing f igures  15 and 17, the large 
skirt shock moves rearward by a considerable amount because of the  increase i n  
ps/p, and consequently the  large peak i n  surface pressure moves rearward a l so  
( f i g .  18). 
required i n  order t o  meet the equal pressure condition across the s l i p  boundary 
generated a t  the  in te rsec t ion  of the  forebody shock and the s k i r t  shock 
(pa t te rn  (3) discussed e a r l i e r ) .  

The assumed free-stream conditions resul ted i n  a density 

Under these par t icu lar  r e a l  gas conditions an expansion fan i s  

These r e s u l t s  indicate  t h a t  t he  flow f i e l d ,  pressure dis t r ibut ion,  and, 
therefore ,  the  center of pressure and force and moment coeff ic ients  o r  s t a b i l i t y  
coef f ic ien ts  f o r  t h i s  configuration are  highly sensi t ive t o  r e a l  gas e f fec ts ,  
primarily the  shock density r a t i o .  
t o  boundary-layer separation and therefore sensi t ive t o  Reynolds number and 
wal l  cooling e f f ec t s ,  it i s  very d i f f i c u l t  t o  extrapolate ground t e s t  r e s u l t s  
t o  f l i g h t  conditions. Any possible s t ruc tura l  weight advantages of these tension 
s h e l l  shapes w i l l  be largely o f f se t  by these unpredictable and generally poor 
aerodynamic charac te r i s t ics .  

Since the  flow f i e l d  i s  a l so  very sensi t ive 

I n  order t o  verif'y experimentally the  dependence of t he  skirt-shock loca- 
t i o n  on densi ty  r a t i o  
f a c i l i t y  with CF4 a s  the t e s t  gas. 
mately 8. 
r a t i o  occurs across a normal shock than f o r  the Mach 8 a i r  t e s t s .  

pS/pm, a few t e s t s  were made i n  a small hypersonic 
The free-stream Mach number was approxi- 

Because of the low specif ic  heat r a t i o  of CF4 a much la rger  density 
This density 
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r a t i o  was determined t o  be about LO by measuring the shock standoff distance a t  
the  stagnation point of a sphere and by using the re la t ion  

which i s  a f i t  t o  the  theore t ica l  and experimental data of references 14  and 15. 
A spark shadowgraph of the flow about the f i n a l  configuration i n  t h i s  CF4 
f a c i l i t y  i s  shown i n  f igure  19 along with a sketch defining A and D. For 
the a i r  tests where the density r a t i o  was 5.6 the shock standoff distance i s  
much larger  (A/D = 0.21) than t h a t  f o r  t he  CF4 t e s t s  where the  density r a t i o  
was 10 (A/D = 0.14). 
i n  a hypersonic f a c i l i t y  may be desirable a s  a way of simulating the  normal 
shock density r a t io s  and resu l t ing  shock shapes t h a t  occur during high-speed 
f l i g h t  where r e a l  gas e f f ec t s  give very d i f fe ren t  density r a t i o s  than those of 
i dea l  gas f a c i l i t i e s  using a i r .  

These r e su l t s  indicate  t h a t  the use of CF4 as  a t e s t  gas 

Heat-transfer dis t r ibut ions.-  Heat-transfer d i s t r ibu t ions  were measured by 
using the technique described i n  references 9 and 10. 
were obtained a t  Reynolds numbers based on free-stream conditions and base 
diameter of approximately 0.2 x 10 6 . 
of 125O F and 250' F (325O K and 394' K )  were used and, since the i n i t i a l  tem- 
perature of the  model was always near room temperature, the temperature change 
of the  model surface was  r e l a t ive ly  small during t e s t ing .  
was approximately 900' F ( 7 5 6 O  K) so that the r a t i o  ATw/Tt 
(mw = Tw,init ial  - Tw,phase change) var ied from 0.033 t o  0.13 f o r  these t e s t s  
whereas Tw/Tt was approximately 0.4 t o  0.5. 

All heat- t ransfer  data 

Coatings having phase-change temperatures 

The t o t a l  temperature 

Representative photographs showing phase-change pat terns  of t he  sharp model 
made from films taken during these t e s t s  a r e  shown i n  f igures  20 t o  22. These 
photographs a re  numbered t o  show the time sequence i n  which they were taken. 
Phase-change pat terns  f o r  the  sharp model a t  zero angle of a t t ack  a r e  shown i n  
f igure 20. The coated model before any phase change has occurred appears white. 
After a phase change t h e  coating i s  transparent and the  dark surface of the  
model i s  v i s ib l e .  The l i nes  separating the  l i g h t  and dark areas a r e  locations 
a t  which a phase change was occurring and are  therefore  a t  a known temperature. 
Since the sharp nose was made of s t e e l  it had a much greater  heat capacity and 
conductivity than the p l a s t i c  and no useful  data could be obtained i n  t h i s  
region. Also, f o r  an equal heat-transfer coeff ic ient ,  it took much longer f o r  
a phase change t o  occur on the s t e e l  surface than on the  p l a s t i c .  
even though the  heating r a t e s  near the  sharp t i p  a re  high compared with those 
i n  the other areas,  no phase change has taken place a t  t h i s  point u n t i l  a much 
l a t e r  time. The pat terns  shown i n  f igure  20 ind ica te  a small band of very high 
heating a t  the  approximate location of t he  peak pressure.  These pa t te rns  a l so  
show tha t  the heat- t ransfer  coeff ic ient  on the  e n t i r e  f l a r e  i s  much la rger  than 
t h a t  on the forward portion. 

A s  a r e s u l t ,  

The phase-change pa t te rns  f o r  the  windward side a t  a = 12' a re  shown i n  
f igure  22. 
bands close together with higher heating r a t e s  than those i n  the  surrounding 
area. 

A t  this t e s t  condition the  phase-change pa t te rns  indicate  two narrow 
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Heat-transfer coeff ic ient  d i s t r ibu t ions  a re  presented i n  f igures  23 t o  26. 
The l i n e s  i n  f igures  23 t o  26 represent fa i red  curves of the  data.  
configuration the data a re  fa i red  i n t o  the calculated values f o r  the  spherical  
stagnation region; these calculated values are  shown a s  a dashed l i ne .  The 
loca l  measured heat-transfer coeff ic ient  h has been nondimensionalized by 
dividing by the calculated heat- t ransfer  coeff ic ient  a t  the stagnation point 
of a reference sphere, which has a radius equal t o  the  model base radius. This 
reference heat-transfer coeff ic ient  ho was calculated by the  method of r e fe r -  
ence 16 using a Newtonian veloci ty  gradient. 
model a t  zero angle of a t tack  i s  shown i n  figure 23. 
r a t i o  of 3.4 was reached a t  a location of r/D 0.34 which i s  somewhat down- 
stream of the peak pressure location of figure l 3 ( a ) .  
data were taken a t  a higher Reynolds number than t h a t  for the  heat- t ransfer  data. 
The wall-to-total-temperature r a t i o s  were different  and, because of the discrete  
spacing of the  pressure o r i f i ce s ,  the peak pressure may have been a t  a s l i gh t ly  
d i f fe ren t  location than t h a t  a t  which the data of figure l3(a) were taken. 
Therefore, only a general comparison between the pressure and heat- t ransfer  
d i s t r ibu t ion  i s  possible. 
sure and heat- t ransfer  d i s t r ibu t ions  a re  somewhat similar i n  t h a t  both have 
wide var ia t ions i n  the value with surface distance and tha t  t he  peak pressures 
a re  i n  the  same approximate location a s  the  high heat-transfer ra tes .  For the  
blunt model a t  zero angle of a t tack  the boundary layer  i s  separated from a 
region j u s t  downstream of the nose t o  the base, and the heat- t ransfer  dis t r ibu-  
t i on  ( f i g .  24) i s  smoother with the  m a x i m u m  measured values near the base a t  
r/D = 0.47. 

For the blunt 

The d is t r ibu t ion  f o r  the sharp 
A maximum heat- t ransfer  

However, the pressure 

Such a general comparison indicates  that the  pres- 

Figures 25 and 26 present measured heat-transfer dis t r ibut ions f o r  the  
sharp model a t  angles of a t tack  of 5' and 12', respectively.  
sented f o r  the  blunt model a t  angle of a t tack since the flow f i e l d  changed with 
the  wall-to-total-temperature r a t i o  f o r  wall temperatures between room tempera- 
t u r e  and the phase-change temperature of the coating. This sensitiveness t o  
wall-to-total-temperature r a t i o  i n  the temperature range aF these t e s t s  resul ted 
i n  a var ia t ion  of heat-transfer coeff ic ient  with time and, consequently, the  
phase-change method, which assumes an invariant heat- t ransfer  coeff ic ient ,  i s  
inval id .  In  general, the heat-transfer dis t r ibut ions a t  angle of a t tack  a re  
i r r egu la r  on the windward s ide with sharp peaks i n  locations downstream of the 
cone-shock skirt-shock intersect ion whereas the leeward side has a more gradual 
var ia t ion .  

No data a r e  pre- 

CONCLUDING REMARKS 

An experimental investigation of the flow f i e l d ,  pressure dis t r ibut ions,  
and heat- t ransfer  d i s t r ibu t ion  f o r  several  tension s h e l l  configwaiiom at 6 
Mach number of 8 has been made and i s  summarized i n  the following paragraphs: 

For these configurations boundary-layer separation plays an important 
r o l e  i n  the observed flow-field phenomena. I n  general, two d i f fe ren t  flow-field 
configurations were observed. 
remained attached f o r  some distance downstream of the  nose, and fa r ther  down- 
stream the flow passed through a large nearly normal shock. 

For one f l o w  configuration the boundary layer  

For the  other type 



of flow configuration the  boundary layer separated ju s t  downstream of the nose 
and reattached on the edge of the f lare.  

* 

The extent of separation and type of flow f i e l d  were found t o  be func- 
t ions  of wall-to-total-temperature r a t io ,  Reynolds number, and minor changes i n  
body shape. 
with a nearly normal f l a r e  shock (high drag) over a wide range of t e s t  condi- 
t ions  was studied more extensively. A cr i te r ion  f o r  dist inguishing between the  
attached high-drag and separated low-drag flow f i e l d s  was found f o r  t h i s  shape. 

A shape which appeared t o  have a steady attached boundary layer  

The high-drag flow f i e l d  produced a wide range of surface pressures with 
surface distance over the  f l a r e  with peaks a s  high a s  2.2 times the  free-stream 
normal shock t o t a l  pressure whereas minimum values were of the  same order as 
t h i s  pressure. 

A comparison of shock pat terns  f o r  the  high-drag configuration taken i n  
a i r  a t  Mach 8, where the normal shock density r a t i o  was 7.6,  with shock pat terns  
obtained i n  CF4 (tetrafluoromethane) a t  a Mach number of about 8, where the  
normal shock density r a t i o  was approximately 10, indicated t h a t  t he  location of 
the nearly normal f lare shock i s  strongly dependent on the  value of t h i s  density 
r a t io .  

These r e su l t s  show t h a t  the flow f i e l d  and therefore the  pressure and 
heating dis t r ibut ion,  t o t a l  drag, and s t a b i l i t y  coeff ic ients  f o r  these shapes 
are  very sensi t ive t o  Reynolds number, wall  cooling e f fec ts ,  minor changes i n  
body shape, and normal shock density r a t i o .  The r e su l t s  a l so  indicate  t h a t  it 
w i l l  be extremely d i f f i c u l t  t o  extrapolate ground tes t  r e su l t s  obtained i n  a i r  
t o  f l i g h t  conditions and t h a t  the  s t ruc tura l  weight advantages of these shapes 
will be largely o f f se t  by t h e i r  unpredictable and generally poor aerodynamic 
character is t ics  . 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 28, 1966, 
124-07 -02-60 -23. 
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